LECTURE 21 - ELECTROSTATIC WAVES IN COLD MAGNETIZED PLASMAS II

Sascha Kempf*
G135, University of Colorado, Boulder

Fall 2020

1 ELECTROSTATIC WAVES IN COLD MAGNETIZED PLASMAS (CNTD.)

In the previous lecture we have found the dispersion relation for electrostatic waves propagating through a cold plasma

$$
\begin{equation*}
\omega^{2}=\sum_{s=i, e} \frac{\omega_{p, s}^{2}}{k^{2}}\left[k_{z}^{2}+\frac{k_{x}^{2}}{1-\frac{\omega_{c, s}^{2}}{\omega^{2}}}\right] \tag{1}
\end{equation*}
$$

We have already discussed the trivial cases of $\mathbf{B}=0$ and $\mathbf{B} \| \mathbf{k}$, as well as the case of a strongly magnetized plasma. We now consider the more complicated case of $\mathbf{B} \perp \mathbf{k}$.

1.1 Dispersion relation for $\mathbf{B} \perp \mathbf{k}$

After setting $k_{z}=0$ the dispersion relation simplifies to

$$
\begin{aligned}
& \omega^{2}=\frac{\omega_{p e}^{2}}{k_{x}^{\chi}} \frac{k_{x}^{\not q}}{1-\frac{\omega_{c e}^{2}}{\omega^{2}}}+\frac{\omega_{p i}^{2}}{k_{x}^{2}} \frac{k_{x}^{2}}{1-\frac{\omega_{c i}^{2}}{\omega^{2}}} \\
& \omega^{2}=\omega_{p e}^{2} \frac{\omega^{2}}{\omega^{2}-\omega_{c e}}+\omega_{p i}^{2} \frac{\omega^{2}}{\omega^{2}-\omega_{c i}} .
\end{aligned}
$$

The resulting dispersion relation has three solutions at $\omega \approx \omega_{c e}, \omega \approx \omega_{c i}$, and $\omega_{c i}<$ $\omega<\omega_{c e}$, which are fundamentally different and need to be investigated separately.

[^0]
1.1.1 Root near $\omega \approx \omega_{c e} \gg \omega_{c i}$

The frequency $\omega_{u h}$ of the resulting upper hybrid wave

$$
\begin{equation*}
\omega_{u h}^{2}=\omega_{p e}^{2}+\omega_{c e}^{2} \tag{2}
\end{equation*}
$$

is called the upper hybrid frequency. They are called such because at $\omega_{u h}$ the plasma and cyclotron properties of electrons mix.

1.1.2 Root near $\omega \approx \omega_{c i} \ll \omega_{c e}$

The dispersion relation for this solution is

$$
\omega^{2}=-\frac{\omega^{2} \omega_{p e}^{2}}{\omega_{c e}}+\frac{\omega^{2} \omega_{p i}^{2}}{\omega^{2}-\omega_{c i}}
$$

or

$$
\frac{\omega_{p i}^{2}}{\omega^{2}-\omega_{c i}}=1+\frac{\omega_{p e}^{2}}{\omega_{c e}},
$$

and finally

$$
\omega^{2}=\omega_{c i}^{2}+\frac{\omega_{p i}^{2}}{1+\frac{\omega_{p e}^{2}}{\omega_{c e}}} .
$$

This is the general solution for $\omega \approx \omega_{c i}$. For strongly magnetized plasmas under lab conditions it is possible to enforce that $\omega_{c e}^{2} \gg \omega_{p e}^{2}$. Under such conditions one can observe electrostatic cyclotron waves propagating with the frequency

$$
\begin{equation*}
\omega^{2}=\omega_{p i}^{2}+\omega_{c i}^{2} \tag{3}
\end{equation*}
$$

1.1.3 Waves with frequencies between $\omega_{c i}$ and $\omega_{c e}$

We first introduce the angle θ between \mathbf{k} and \mathbf{B} and rewrite the general dispersion relation as

$$
\omega^{2}=\sum_{s=i, e} \omega_{p, s}^{2} \cos ^{2} \theta+\frac{\sin ^{2} \theta}{1-\frac{\omega_{c, s}^{2}}{\omega^{2}}}
$$

For the electrons is $\frac{\omega_{c e}}{\omega} \gg 1$ and the second term of the sum is approximately $-\frac{\omega^{2}}{\omega_{c e}^{2}} \sin ^{2} \theta$. In case of the ions, $\frac{\omega_{c i}}{\omega} \ll 1$, and the second term is $\approx \sin ^{2} \theta$. Hence,

$$
\begin{aligned}
\omega^{2} & =\omega_{p i}^{2} \underbrace{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}_{=1}+\omega_{p e}^{2}\left(\cos ^{2} \theta-\frac{\omega^{2}}{\omega_{c e}^{2}} \sin ^{2} \theta\right) \\
\omega^{2}\left[1+\frac{\omega_{p e}^{2}}{\omega_{c e}^{2}} \sin ^{2} \theta\right] & =\omega_{p i}^{2}\left[1+\frac{m_{i}}{m_{e}} \cos ^{2} \theta\right]
\end{aligned}
$$

and finally

$$
\omega^{2}=\omega_{p i}^{2} \omega_{c e}^{2}\left[\frac{1+\frac{m_{i}}{m_{e}} \cos ^{2} \theta}{\omega_{c e}^{2}+\omega_{p e}^{2} \sin ^{2} \theta}\right]
$$

Note that there is no depend on $|\mathbf{k}|$. Now, for $\mathbf{k} \perp \mathbf{B}$ is $\sin \theta=1$ and $\cos \theta=0$, and using that

$$
\omega_{p i}^{2} \omega_{c e}^{2}=\omega_{p e}^{2}\left(\omega_{c e} \omega_{p i}\right)
$$

one finds that

$$
\omega^{2}=\left(\omega_{c e} \omega_{p i}\right)\left(\frac{\omega_{p c}^{2}}{\omega_{c e}^{2}+\omega_{p e}^{2}}\right)
$$

If now $\omega_{c e}^{2} \ll \omega_{p e}^{2}$, then we will observe a lower hybrid wave

$$
\begin{equation*}
\omega_{l h}^{2}=\omega_{c e} \omega_{p e} \tag{4}
\end{equation*}
$$

[^0]: *sascha.kempf@colorado.edu

