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1 electrostatic waves in cold magnetized plasmas
(cntd . )

In the previous lecture we have found the dispersion relation for electrostatic waves
propagating through a cold plasma
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We have already discussed the trivial cases of B = 0 and B‖k, as well as the case of a
strongly magnetized plasma. We now consider the more complicated case of B⊥k.

1.1 Dispersion relation for B⊥k

After setting kz = 0 the dispersion relation simplifies to
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The resulting dispersion relation has three solutions at ω≈ ωce, ω≈ ωci, and ωci <

ω< ωce, which are fundamentally different and need to be investigated separately.
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1.1.1 Root near ω≈ ωce� ωci

The frequency ωuh of the resulting upper hybrid wave

ω2
uh = ω2

pe +ω
2
ce (2)

is called the upper hybrid frequency. They are called such because at ωuh the plasma
and cyclotron properties of electrons mix.

1.1.2 Root near ω≈ ωci� ωce

The dispersion relation for this solution is
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This is the general solution for ω≈ ωci. For strongly magnetized plasmas under lab
conditions it is possible to enforce that ω2

ce� ω2
pe. Under such conditions one can

observe electrostatic cyclotron waves propagating with the frequency

ω2 = ω2
pi +ω

2
ci. (3)

1.1.3 Waves with frequencies between ωci and ωce

We first introduce the angle θ between k and B and rewrite the general dispersion
relation as
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For the electrons is ωce
ω
� 1 and the second term of the sum is approximately

− ω2

ω2
ce
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Note that there is no depend on |k|. Now, for k⊥B is sinθ= 1 and cosθ= 0, and
using that
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one finds that
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If now ω2
ce� ω2

pe, then we will observe a lower hybrid wave

ω2
lh = ωceωpe. (4)
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